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Generalised Backlund transformation for some non-linear 
partial diff erential-diff erence equations 

R K Dodd 
School of Mathematics, Trinity College Dublin, Dublin 2, Ireland 

Received 2 June 1977, in final form 6 October 1977 

Abstract. In this paper we determine the generalised Backlund transformations connec- 
ting two different solutions of non-linear partial differential-difference equations solvable 
by an inverse method. The scattering problem for the inverse method is the discretised 
scalar Schrodinger equation. In particular we isolate the Backlund transformations relat- 
ing two different solutions of the same equation and a transformation between a solution 
of the same equation at two different times. 

1. Introduction 

Flaschka (1974) made the first successful application of the inverse scattering trans- 
form to solving a non-linear differential-difference equation in his solution of a 
one-dimensional exponential lattice with infinite length, the Toda lattice (Toda 
1967a, b, 1970). The corresponding scattering problem was the discretised 
Schrodinger equation for which Flaschka extended to the whole line the analysis of 
the inverse problem for the discretised Schrodinger equation on the half line given by 
Case and Kac (1973) and Case (1973). The Toda lattice has been the subject of 
intensive investigation in recent years (see Prog. Theor. Phys. Suppl. No. 59 1976 for 
many references) and has played a comparable role to the Korteweg-de Vries equa- 
tion in the study of the soliton phenomenon in non-linear differential-difference 
equations. It is interesting to note in particular that the Korteweg-de Vries equation 
is one of the possible continuum limits of the Toda lattice (Toda and Wadati 1973). 

In this paper we closely follow the ideas of Ablowitz et a1 (1974) as developed by 
them in their paper on the generalised Zakharov-Shabat scattering problem (Zak- 
harov and Shabat 1972). They emphasise the relationship between the inverse scat- 
tering transform and Fourier analysis and the important role played by the dispersion 
relation of the linearised evolution equation. Indeed for a given linear evolution 
equation (one spatial dimension) they show that its dispersion relation determines the 
corresponding solvable non-linear evolution equation. Fundamental to this approach 
is the scattering problem satisfied by the ‘squared eigenfunctions’ of the original 
scattering problem (Ablowitz et a1 1974, Kaup 1976). Flaschka and McLaughlin 
(1976) have already applied this method using the discretised Schrodinger equation as 
the original scattering problem and identified the class of solvable non-linear 
differential-difference equations. The Toda lattice is the simplest member of this 
class. 
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In deriving the formulae for the generalised Backlund transformations and other 
functional relations we use the scattering problem satisfied by a generalisation of the 
'squxed eigenfunction'. In this generalisation the 'squared eigenfunctions' are 
compounded from the eigenfunctions for two distinct sets of potentials satisfying the 
scattering problem. Undoubtedly the same results can be obtained by the related 
method of 'generalised Wronskians' developed by Calogero (1975) and Calogero and 
Degasperis (1976a, b) but it seems simpler to proceed directly from the scattering 
problem itself. This approach has also been applied to the generalised Zakharov- 
Shabat scheme (Dodd and Bullough 1977). Our results in fact correspond to a 
discrete version of the results of Calogero (1975) and Calogero and Degasperis 
(1976b) for the Schrodinger scattering problem. 

2. Relationships between the generalised 'squared eigenfunctions' and the scattering 
data 

Consider the self-adjoint operator L which satisfies the scattering problem (Flaschka 
1974) 

( L u ) ( ~ ) E u ( ~  -l)u(n - 1 ) + ~ ( n ) ~ ( n  + l ) + b ( n ) ~ ( n ) = A ~ ( n )  (2.1) 
where 

A = $(z +z-l) .  

The potentials a(n) ,  b(n )  are finite valued and satisfy the boundary conditions 
a(n)+$, b(n)+O exponentially as Inl-*m and a(n)>O for all n, n € 2  (the integers). 
We consider that the potentials and eigenfunctions depend smoothly on spatial 
parameters y = ( y l , .  , . , y m )  as well as a temporal parameter 1. For notational simpli- 
city we suppress all parameters until we make specific reference to them. The main 
features connected with this scattering problem are given in table 1. 

In this table cu-'(k) and P ( k ) a - ' ( k )  are identified as the transmission and 
reflection coefficients respectively of the scattered waves from a 'plane wave' incident 
from the right. The fundamental relations (entry 4) in table 1 are justified by the 

Table 1. Scattering theory for ( L u ) ( n ) - a ( n  - l )u(n  - l ) + a ( n ) u ( n  + l ) + b ( n ) u ( n ) =  
+(z + z - ' ) u ( n ) .  

~ 

1. Spectrum of L point spectrum 2 , ~ ] - 1 , 1 [  f o r j = l ,  . . . ,  N 

2 .  Jost functions 9 ( n ,  z ) - z "  as n 
continuous spectrum z =e" k E [0,27r[ 

$(n,  z ) - z - "  asn+-co 
m 

3.  Bound states 1 &,z,)= 1 

4. Fundamental relations 
n=-m 

$(n,  k)= B(k)+(n ,  k ) + a ( k W ( n ,  -k) 
4 ( n ,  k)= -B(-k)lL(n, k ) + a ( k ) $ ( n ,  - k )  
a ( z )  is analytic for /zI < 1 

k E [0,2a[ 

5 .  Asymptotic form of +(n, k)-p(k)e'"'+a(k)e-'"' n+CO 

i(a Z ~ ) - C , ( Z ~ ) ~  n + m  
c, are the normalisation constants for the proper eigenfunctlons 

fundamentalsolutions d(n, k ) -  -O(-k)e-'"' +a(k)e'" '  n + - m  
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constitutes the scattering data for a specific pair of potentials a, b. Knowledge of S is 
equivalent to the specification of the spectral distribution function for L and therefore 
allows the unique reconstruction of the potentials a and b. The reconstruction of the 
potentials from S constitutes the inverse scattering problem and this has been fully 
investigated by Flaschka (1974)’ Case and Kac (1973) and Case (1973). 

A second pair of potentials a’(n) ,  b’(n) with primed parameters, satisfies equation 
(2.1) with primed generalised eigenfunctions u‘(n) .  Introduce the definitions 

u ( n )  = f (n  )g’(n 1 w(n)=f(n)g’(n + 1) w’(n) = f(n + l)g’(n) (2.2) 

where f(n) and g’(n) are generalised eigenfunctions satisfying (2.1) for the unprimed 
and primed potentials respectively. It is immediate from (2.1) that 

( 2 . 3 ~ )  

(2.3b) 

~ ( n  - l)w(n - l ) + a ( n ) W ’ ( n ) + b ( n ) v ( n ) = h u ( n )  

~ ’ ( n  - l)w’(n - l )+U’(n)w(n)+h’(n)v(n)=Au(n) .  

From equations (2.3) we obtain the recursion formula 

a(n)w‘(n)-a’(n - l)w‘(n - 1) 

= h ( n ) ~ a ’ ( n ) w ( n ) + ( b ’ ( n ) - b ( n ) ) u ( n ) - a ( n  - l)w(n - 1). (2.4) 

The recursion formula (2.4) leads to the following formula for w’(n): 

(2.5b) 

and ‘.’ is a scalar product between two-component vectors. We have suppressed the 
index n in c ( j )  for notational clarity (i.e. for c ( j )  read c(n,  j )) .  Substituting ( 2 . 5 ~ )  into 
( 2 . 3 ~ )  produces the important relation 

- (b’(l)- b ( l ) ) ~ ( l ) ]  + b‘(n)u(n)+ ~ ’ ( n ) ~ ( n ) +  ~ ( n  - l)w(n - l)=AU(n). 

(2.6) 

From the scattering problem (2.1) it is straightforward to obtain a further relation. We 
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begin from the formula 

A (a‘(n)w(n>- a ( n  - l ) w ( n  - 1))  

= s ( n ) = b ( n ) a ’ ( n ) w ( n ) + a ’ ( n ) a ( n ) u ( n  + l ) - a ( n  - l ) a ‘ ( n  - l)u(n - 1) 

-a (n  - l )b ’ (n )w(n  - 1). (2 .7)  

+ b ( n ) a ’ ( n ) w ( n ) d ( n ) + d ( n  - l )a ’ (n  - l )a(n - l ) v ( n )  

- d ( l - l ) u ’ ( l -  l ) a ( l -  l ) v ( l ) -d (Z) (u ’ (~)a ( l ) v ( l+  l )+b( l )u ’ ( l )w( l ) )  

( 2 . 8 ~ )  

where 

(2 .8b )  

and as for equation ( 2 3 )  we have suppressed the index n in d ( l ) .  
Equations (2 .6)  and ( 2 . 8 ~ )  are fundamental to the rest of this paper. Letting 

1 + --CO and choosing f = $(k), g’ = $’(k) we obtain the eigenvalue problem satisfied 
by the generalisation of the ‘squared eigenfunctions’ mentioned in the introduction, 

( 2 . 9 ~ )  

Here (-: ) denotes a two-‘doubly-infinite’-component column vector (both v and w 

have a doubly infinite number of comonents since n E 2). The nth components of the 
left-hand side of equation (2 .9a)  are given by 

1 

and for this particular case u ( j ) =  @ ( j ,  k)@‘( j ,  k) and w ( j ) =  $( j ,  k ) @ ‘ ( j +  1, k). The 
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adjoint operator A+ is defined by, 

85 

+ d ( n - l ) a ’ ( n - l ) a ( n - l ) q ( n - l ) + c ( n ) ( b ‘ ( n ) - b ( n ) )  1 ‘b’ (n)p(n)+d(n - l)a’(n - l)a(n - l)q(n) 

(2.10) 

where (-:- ) is the adjoint eigenstate to 

We next produce formulae connecting the scattering data for the two potentials 
with the generalised ‘squared eigenfunctions’. These are basic to the generalised 
Backlund transformations derived in the next section. In the remainder of this section 
however we shall use them to determine the variation of the scattering data and 
specify the class of solvable non-linear partial differential-difference equations. These 
results are a slight generalisation of the work of Flaschka and McLaughlin (1976). 

Our starting point is equation (2.6) in which we allow n +CO, 1 + -m. Use of table 
1 then yields the following formulae for different choices of f  and g’: 

a‘(1) 1 
Q - n -a’ = - l (J l (k) ,  4 ’ ( k ) )  

I=- -  a ( l )  2 sin k 

(2.11a) 

(2.11b) 

(2.11c) 

where 

C ( j ) =  lim{c(j)} and k ~ ] 0 , 2 7 ~ [ .  (2.11e) 
n+n 

Analogous formulae for p’ and p can be obtained but these are not required. We now 
introduce the definition 

1 
I ( 4 ( k ) ,  Jl’(k)) gffn(k)(npt eik -alp e-ik). (2.12) Qp’ - a ’p  = - 

2 sin k 
In the unsuppressed notation n(k) is 

W, Y, f)= h(A, Y, t)/l(A, Y, r )  (2.13) 
with A = t(eik +e-ik) and h and 1 are two entire but arbitrary functions of A .  A full 
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discussion of the definition in equation (2.12) is given in 0 4. However we now show 
that the definition enables the trivial integration of the equations defining the evolu- 
tion of the scattering data when these do not depend on the spatial parameters y. In 
the general case the definition equation (2.12) ensures that the scattering data satisfy 
lineur partial differential equations. 

We require that in the limit (a', b')+(a,  b )  along some path. Equations (2,11a), 
(2.11b) and (2.12) become 

i 
sin k Aa- '  =-J(4(k), $(k))a-' 

A (-) P i  = -J($(k), $(k))a-' = 2i sin kR(k)(-) P 
a sink a 

a a 
A=-+h(t ,y ,A).--  

a t  JY 

(2.14a) 

(2.146) 

( 2 . 1 4 ~ )  

(2.14d) 

A is the general differential operator compatible with the limiting process 
described above for which the solvable non-linear equations take the form of evolu- 
tion differential-difference equations when h E O .  With this definition of A a Lax 
formulation (Lax 1968) exists provided 

A(A) = 0 3  Az = 0, z &  {-1,l) .  (2.15) 

The corresponding evolution of the normalisation 'constants' ci for the eigenfunctions 
dj (n)=  4(n, z i )  where the eigenvalue ti €1-1, 1[, can be obtained in the following 
way. From equation (2.1) and the fundamental relations (entry 4) in table 1, we 
observe that 

1 where Ai = z(zj +zyl), CL =cos k and we have used the fact that &(a)  = &bi(n). From 
equation (2.16) we conclude that the normalisation constants cj are defined after 
letting p + A i  by 

upon using 

-=- d 22' d and &,=$I 
dA 2'-1 dz Z = L ,  

Consequently 

( 2 . 1 7 ~ )  

(2.17b) 

( 2 . 1 8 ~ )  

and 

A z ~  = 0. (2.18b) 
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Equations (2.14) and (2.18) define the evolution of the scattering data. For the case 
when the potentials and the eigenvalues do not depend on the parameters y, these 
equations reduce to the usual form (Flaschka 1974). The corresponding solvable 
non-linear partial differential-difference equations are obtainable from (2.14b).  We 
jump ahead a little here and use the results in 0 3 ,  equations (3 .2a)  and (3 .2d)  to write 
this relation as 

(2.19) J ( $ ( k ) ,  $ ( k ) ) + W ) K ( $ ( k ) ,  $ ( k ) )  = 0. 

Consequently 

and the solvable non-linear partial diff erential-difference equations are 

(---)+a(+@-) Ab G = o  
2Aa 

where 

(2 .20a)  

(2.20b) 

(2 .20c)  

Notice that equation (2.20b) is written as a two-doubly-infinite-component vector 
equation. 

3. Generalised Backlund transformations 

In this section we derive the generalised Backlund transformation as well as some 
other functional relations between solutions of the same non-linear partial differen- 
tial-difference equation mentioned in the introduction. Historically Backlund 
transformations arose from the study of the transformation between surfaces in 
three-space. The natural generalisation of this concept to n-dimensional space in- 
dicates that n - 1 algebraically distinct relations are needed between the quantities 
defining surface elements on the two surfaces to constitute a Backlund transformation 
(Dodd and Bullough 1976). However the extensions to more than two independent 
variables current in the literature and still referred to as Backlund transformations 
arise from the alternative interpretation of a Backlund transformation as a trans- 
formation between solutions to partial differential equations. In all the cases so far 
examined the transformation consists of two equations relating the solutions and their 
partial derivatives. 

Toda and Wadati (1975) and Chen and Liu (1975) have obtained the Backlund 
transformation for the Toda lattice by extending the definition to embrace differen- 
tial-diff erence equations. These authors show that an algebraic superposition 
principle exists for solutions to the Toda lattice and use it to calculate the N-soliton 
solution from the Backlund transformation. Although the deeper mathematical 
significance of the existence of a Backlund transformation with regards to algebraic 
properties of the original equation is being developed in the continuous case (cf 
Wahlquist and Estabrook 1975, Dodd and Gibbon 1977) for the discrete case this still 
remains to be investigated. 
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We re-derive the Backlund transformation for the Toda lattice, entirely from the 
scattering problem, as the simplest example from the general Backlund trans- 
formation formula. 

The general Backlund transformations are obtained from the definition in (2.12), 

I ( + ( k ) ,  +’(k))= -R(k)[ap’(e*” - l)+a’p(e-Zik - 11. (3.1) 

From equation ( 2 . 8 ~ )  by letting n +CO, 1 + -CO and taking suitable choices of f and g‘ 
further relations between the Jost functions and the scattering data are produced: 

- l)+ap’(e2ik - I ) =  K ( I L ( ~ ) ,  +’(k)) ( 3 . 2 ~ )  

where 

(3.2d) 

In obtaining the equations (3.2b), ( 3 . 2 ~ )  use has been made of the relationship 
(conservation of probability), 

a ( - k ) a ( k ) =  1 + P ( - k ) B ( k )  (3.3) 
which is obtained directly from the fundamental relations (entry 4) in table 1.  Equa- 
tion (3.1) can therefore be written as 

(3.4a) 

where 

(3.4b) 
The adjoint operator A+, equation (2.10), and the definition of R ( k )  as a ratio of 
entire functions (2.13) enables the following relationship to be obtained from (3.4a), 

i(~+)( - P - ) + 8 h ( ~ + ) (  - - -  R ) = 0. 
Q (3.5) 

Equation (3.5) is a functional relation connecting pairs of potentials ( U ’ ,  b‘), (a, b)  of 
the scattering problem (2.1) and therefore constitutes a transformation between two 
different solutions to any one of the solvable non-linear partial diff erential-diff erence 
equations defined by (2.20b). Equation (3.5) is the general Backlund transformation 
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formula for equations (2.20b). A fuller discussion of the general transformation 
defined by (3.5) will be given elsewhere. Here we merely produce the simplest 
member of the class of transformations by putting a(k) = p  - a  constant. In this case 
equation (3.5) is 

This Backlund transformation is easily brought into the more familiar form (Toda and 
Wadati 1975, Wadati 1976) by the substitution for the Toda lattice, b ( n ) =  
-$d(n - l), 2 ln(2a(n))= - (Q(n) -Q(n  - 1)) which quickly yields 

fi ( G)2 = exp(Q(n - 1)- Q‘(n - 1)+ Q‘(co)- Q(co)) 
J = n  a ’ ( ] )  

so that equations (3.6) become 

6’(n - 1)- 6 ( n  - 1) 

=A{exp[-(Q’(n - l ) -Q(n -2))]-exp[-(Q‘(n)-Q(n -1))l) (3.7a) 

d(n - 1)- d’(n)= A-’{exp[-(Q(n - 1)- Q‘(n - l))]-exp[-(Q(n)- Q’(n)) ] )  (3.7b) 
where A = p exp(Q’(co)- Q(m)). The change in the scattering data corresponding to 
the Backlund transformation (3.5) is obtained from equations (2.11), (2.12) and (3.2). 
Thus we obtain the formulae 

l(k)+e-’*[ i s -m fi (““‘)a a‘(]) -a’] h ( k ) = a ( k ) M ( k )  (3.8a) 
j=-m 

m 

[a- n 4, (-)a’]I(k)+e“[ a’( i )  n ( $ ) a ’ - a ] h ( k ) = a ’ ( k ) N ( k )  
j=-m a(]) j - -m a ( I )  

(3.86) 

-=e’*( P 1 - h  .k  eik ) p‘ 
a le‘  - h  2 

where 

A and ( -g- ) is defined by (3.4b) and (- - -) by 
F ( k )  

( 3 . 8 ~ )  

(3.8d) 

(3.8e) 
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For the case given by (3.6), (3.7), R(k) = p ,  equations (3.8) become, using (3.5), 

p I -p  eik 
a - p  a‘ 
_-  -- 

eik e 

and 

(3.9u) 

(3.9b) 

(3.9c) 

We take the modulus in ( 3 . 9 ~ )  because u( j )>O for all j c  2. We note that (3.96) is in 
agreement with the Poisson-Jensen identity (Flaschka 1974) when a contains an 
additional eigenvalue to a’ (i.e. an extra soliton). 

l n a ( z ) =  -lna(O)+- 1 “  1 d k [ l n ( l a ( k ) 1 2 ) ( ~ ) ]  eik 
T o  e -  

(3.10) 

Equations (3.9) indicate that the addition of a soliton is always accompanied by a 
change in phase of P ( k ) ,  thus P ( k ) = - e i k p ’ ( k ) .  Consider the particular class of 
evolution difference equations defined by 

- ( - - )+4w(Z) a b  G =o, 
at  2a (3.11) 

see equations (2.206) and (2 .20~)  for the definitions of G and H. Then equations 
(2.14) imply that 

-(-) = 2i sin k + ( k ) ( - ) ,  P 
at a a 

where 4 ( k ) =  4(i sin k), which can be integrated to yield, 

P P  - ( t )  = - ( t ‘ )  exp[2i sin k 4 ( k ) ( t  - t’)]. 
a a 

( 3 . 1 2 ~ )  

(3.12b) 

From equation ( 3 . 9 ~ )  we see that this corresponds to a generalised Backlund trans- 
formation provided 

( 3 . 1 2 ~ )  

where we have defined (P/a)(t‘)= p‘a’. Equating equations (3.126) and ( 3 . 1 2 ~ )  and 
solving for R we obtain 

(3.13) 
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The corresponding generalised Backlund transformation is from equation (3.5), 

+ 2  1 / 2  R 
8[A++ (1  + A  ) ]{exp[2(t - t‘)Afq5(h’)] - l }  (- -) +[exp[2(t - t’)A+q5(A+)] S 

P 
0 - {A + + [ 1 + (1 + A +2)1/2]2}] (- - ) = 0, 

where 

A’=A+(a’=a( t ’ ) ,  a = a ( t ) ) .  

( 3 . 1 4 ~ )  

(3.14b) 

In the limit, t ‘ - t  we recover equation (3.11) from equation (3.14a). Equation (3.14) 
is therefore a generalised Backlund transformation which connects the same solution 
to a given differential-difference equation at two different times. 

4. Conclusion 

Besides obtaining the generalised Backlund transformations for the partial differen- 
tial-difference equations related to the discretised Schrodinger equation we have also 
outlined a general method for obtaining these transformations which provides an 
alternative to the generalised Wronskian technique of Calogero and Degasperis (e.g. 
Calogero and Degasperis 1975, 1976a, b). In this conclusion we sketch this method 
for linear differential operators on the real line and expect that it is applicable to a 
wide class of inverse methods (e.g. the N-channel Schrodinger problem and cf Dodd 
and Bullough 1977). Let 

L(V)w = A w  (4.1) 

represent a scattering problem where L is a linear differential operator depending on 
the potentials V and w is an eigenvector (e.g. V = (sl, . . . , s n ) ,  w and n X 1 column 
vector). Let the boundary conditions be x -* fa, V -* 0 and the corresponding 
fundamental matrix solutions defined by these boundary conditions be denoted ‘P, a, 
and let CP = V A  define the scattering matrix A.  

(i) Let @, a’ be two fundamental matrix solutions to (4.1) and let V, V’ denote the 
corresponding potential functions. Then from equation (4.1) determine the operator 
equation satisfied by the generalised squared eigenfunctions W(@, CP’) = CP-’Q>’, 

A(V, V’) W ( @ ,  a’) = A W(@, a’). (4.2) 

(ii) Using the matrix functions @, @’ in (4.1) and subtracting the resulting equations 
and then integrating one can obtain a relationship between the scattering data and an 
inner product. This inner product is between quadratic products compounded from 
the fundamental solutions, and functions of the potentials. We write this as 

A-’(A’-A)=(M(v ,  vi), w(@, a’)). (4.3) 

(iii) 
mission and reflection coefficients, the potentials and W(@, @’), 

From (4.1) it is possible to obtain a second relationship between the trans- 
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(iv) Consequently if a(A) is an entire function of A, equations (4.3) and (4.4) imply 
that 

A ’ - A  =n(A)K(A,  A’) (4.5u) 

and 

( M ( V ,  V’) - f I (A)N(V,  V’),  W(@,@’) )=O (4.5b) 

for a special set of potentials V, V’. In particular using (4.3), potentials which are 
related by 

M (  V, V ’ )  - n(A+)N( V, V ’ )  = 0 (4.6) 
provide a sufficient non-trivial condition for (4.5b) to be satisfied. We term equation 
(4.6) the generalised Backlund transformations for the associated solvable equations, 
(really only one half of the transformation, the other half can be recovered from the 
equation itself and (4.6)). Equation ( 4 . 5 ~ )  and similar equations will express the 
corresponding change in the scattering data when one transforms using (4.6) between 
the sets of potentials. 

The above outline is only a sketch and not to be taken too literally. Modifications 
will be necessary depending upon the specific scattering problem. 
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